Effects of intermittent traction in patients with cervical osteoarthritis

Mohammad Akbari,1 PhD, Mohammad Bayat,2 PhD.

Department of Physical Therapy, School of Rehabilitation Sciences, Tehran, Iran.

Abstract

Background: Osteoarthritis (OA) is the most common joint disease occurring after middle age. Because of the high mobility of the neck, OA is common in the cervical spine. The purpose of this study was to determine and compare the effects of intermittent traction on patients with mild and moderate cervical OA. Therefore, 32 patients with cervical OA were recruited.

Methods: A clinical trial study was designed for patients with cervical OA that were randomly assigned in two equal groups. Control group received a routine physical therapy protocol which included moist heat, transcutaneous electrical nerve stimulation (TENS), and an exercise for neck and shoulder girdle. Experimental group received a routine physical therapy protocol plus intermittent traction (IT).

Results: Pain and mobility improved in both groups. There was significant difference in interaction of the improvement of cervical pain between the two groups, the rate of pain reduction; sleep ease, medicine taking and range of motion (ROM) improvement in the experimental group were higher than that of the control group.

Conclusion: The results justify the efficacy of IT, therefore it can be concluded that the IT is an effective modality for patients with mild and moderate cervical OA.

Keywords: cervical mobility, intermittent traction, neck pain, numeric pain rating scale, osteoarthritis, physical therapy, range of motion.
on sustain and reflex mechanisms [13,14]. Spinal elongations through an increase in intervertebral space and relaxation of the spinal muscles is assumed to have the most important role in the proposed mechanisms by which IT could be effective [15,16]. Cervical traction can be given in either a seated or supine position [17]. However, despite its widespread use, opinions are divergent on methods of application and clinical results [18]. The aim of this study was to verify the effectiveness of IT on patients with mild and moderate OA of the neck and to compare it with a control group.

Methods
Participants: This study was conducted as a clinical trial and performed in the physical therapy clinics of the Rehabilitation Sciences faculty of Iran Medical Sciences University and Health Services, Tehran, Iran, in Oct 2004-Jun 2006. Thirty-two male and female consecutive patients, diagnosed with mild and/or moderate cervical OA, were randomly divided into two equal groups (16 participants). In the present study patients reported a chronic and/or dull pain in the neck, and shoulder region, or a radicular pain through the upper limbs; and had a positive compression and distraction tests result. Compression and distraction force applied to cervical spine in seated position. If the test traction relieves and compression aggravates the symptoms test result was considered positive. They had at least two signs out of four radiological changes in the cervical region. 1 - Intervertebral disc space narrowing, 2 - Sclerosis of subchondral bone, 3 - Osteophyte formation between adjacent vertebral bodies or articular facets. 4 - The narrowing of the space between articular processes (facet joints) [10, 17].

Participant inclusion criteria
Patients with mild or moderate neck OA who referred to the physiotherapy were selected. They have at least two out of four of the following radiographic changes in the cervical region.

1 - Intervertebral disc space narrowing, 2 - Sclerosis of subchondral bone,
3 - Osteophyte formation between adjacent vertebral bodies or articular facets.
4 - The narrowing of the space between articular processes (facet joints) [10, 17].

Participant exclusion criteria
Patients with severe neck OA. Patients who did not complete a 10-sessions therapeutic peri-
od, or follow up evaluation. And patients with
neck pain by other causes (myofascial trigger
points and …).

Data collection included subjects' interview,
appropriate musculoskeletal evaluation, and
performing cervical compression and distraction
tests. Individual characteristics (age, weight
and height), job, the involved side, duration
of the illness, and the grade of pain, were
recorded using a questionnaire. Neck range of
motion (ROM) in flexion, extension, rotation
to the left and the right, and the right and the
left lateral flexion were measured by the standard
flexible tape according to the Reese's method
[21]. Pain on the neck and shoulders region,
radiculopathy and sleep disorder quantified ac-
cording to the numeric pain rating scale
(NPRS) [10, 19]. Information obtained for each
patient were recorded in a questionnaire.

Statistical considerations
Data were analyzed using SPSS for windows
(SPSS 10, SPSS Inc., USA).Excel and R ver-
sion 2.3.1. Kolmogorov smirnov (KS) test
showed no departure from normality for pain
(NPRS) and neck movement (cm) data. Therefore
we used the following procedures and sta-
tistical methods.

1- Repeated Measures ANOVA were used for
four times of evaluation.
2- Bonferoni post hoc test was used for pair
wise comparison for evaluation 1 through 4.
3- Independent t-test was used to compare
dependent variables of control group with ex-
perimental group. Statistical significance for all
tests was accepted 0.05 level.

Results
In the control group, the subjects' age was
64.06 ± 12.5 years, weight 68.19 ± 13.08 kg,
and height 164.18 ± 9.51 cm. Mean duration of
all patients' illness from onset of symptoms was
5.49 ± 4.92 years. Seven subjects were house-
wives and nine employees. In the experimental
group, the subjects' age was 57.43 ± 7.06 years,
weight 66.5 ± 14.5 kg, and height 163.5 ± 6.37
cm. Mean duration of all patients' illness from
the onset of symptoms was 3.17 ± 3.8 years.
Seven subjects were housewives and nine em-
ployees.

Comparing control and experimental groups,
in spite of no significant mean difference for the
neck pain decrease, there was significant differ-
ence in interaction of cervical pain reduction
with (p<.006) [fig. 1]. There was significant
difference in lateral bending of the neck to the
left in 3rd evaluation with (P<0/033) and in 4th
evaluation with (P<0/014). The rate of ROM in

Fig.1. Interaction of pain reduction in control and experimental groups (p<0.006).
experimental group increased more than the other. But rate of improvement approximately about all of the variables, especially rate of pain reduction, sleep disorder and NSAID taking in the experimental group were more than the control group (Table 1).

Group results for the control and experiment groups are presented in Tables 2 & 3.

Discussion

The purpose of the present study was to determine the effects of IT on patients with mild and moderate OA. Inter group results showed that there was significant interaction in pain reduction between the control and the experimental groups, and the rate of the neck pain reduction, sleep disorder, medicine taking and the increase of the neck ROM in the experimental group was more than that of the control group.

Intra group results of the study showed that there was significant statistical difference among evaluation times in the improvement of the neck and the radicular pain, increasing extension and lateral bending of the ROM in the control. To explain the positive changes in the control group, we may conclude that this improvement may be due to several factors such as 1) application of conventional TENS that modulate the pain in different ways, therefore it can reduce local neck pain and radicular pain. 2) Application of hot pack, which produces superficial moist heat, causes local and general relaxation and reduction of protective spasm, leading to pain relief. 3) Training of the neck and shoulder muscles exercises may result in the improvement of muscle performance of the neck and shoulder girdle, an increase in cervical stability, a decrease in cervical micro-trauma

<table>
<thead>
<tr>
<th>Variable</th>
<th>Pain</th>
<th>Flexion</th>
<th>Extension</th>
<th>Rotation to the right</th>
<th>Rotation to the left</th>
<th>Lat. flexion to the right</th>
<th>Lat. flexion to the left</th>
<th>NSAID taking</th>
<th>Radicular pain</th>
<th>Sleep disorder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>49</td>
<td>7.98</td>
<td>15.06</td>
<td>3.02</td>
<td>5.4</td>
<td>15.83</td>
<td>23.65</td>
<td>74</td>
<td>49.87</td>
<td>32</td>
</tr>
<tr>
<td>Experiment</td>
<td>68.8</td>
<td>11.24</td>
<td>19.88</td>
<td>15.15</td>
<td>15.9</td>
<td>17.79</td>
<td>14.58</td>
<td>98.85</td>
<td>70.34</td>
<td>85.17</td>
</tr>
</tbody>
</table>

Table 1. Rate of variable changes between control and experimental groups (percent).

Intra group results of the study showed that there was significant statistical difference among evaluation times in the improvement of the neck and the radicular pain, increasing extension and lateral bending of the ROM in the control. To explain the positive changes in the control group, we may conclude that this improvement may be due to several factors such as 1) application of conventional TENS that modulate the pain in different ways, therefore it can reduce local neck pain and radicular pain. 2) Application of hot pack, which produces superficial moist heat, causes local and general relaxation and reduction of protective spasm, leading to pain relief. 3) Training of the neck and shoulder muscles exercises may result in the improvement of muscle performance of the neck and shoulder girdle, an increase in cervical stability, a decrease in cervical micro-trauma

<table>
<thead>
<tr>
<th>Evaluation Phases</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistical index</td>
<td>Mean ± SD</td>
<td>Mean ± SD</td>
<td>Mean ± SD</td>
<td>Mean ± SD</td>
</tr>
<tr>
<td>Variable</td>
<td>CG EG</td>
<td>CG EG</td>
<td>CG EG</td>
<td>CG EG</td>
</tr>
<tr>
<td>Pain</td>
<td>6.62 ± 2.44</td>
<td>7.5 ± 2.09</td>
<td>4.43 ± 2.44</td>
<td>5.06 ± 1.73</td>
</tr>
<tr>
<td>Extension</td>
<td>6.37 ± 5.28</td>
<td>5.28 ± 1.39</td>
<td>7.12 ± 1.53</td>
<td>6.90 ± 1.79</td>
</tr>
<tr>
<td>Rotation to the right</td>
<td>9.94 ± 9.96</td>
<td>9.26 ± 2.93</td>
<td>10.72 ± 10.25</td>
<td>10.47 ± 10.69</td>
</tr>
<tr>
<td>Rotation to the left</td>
<td>3.12 ± 1.83</td>
<td>2.93 ± 2.43</td>
<td>2.91 ± 1.93</td>
<td>2.91 ± 1.93</td>
</tr>
<tr>
<td>Lat. Flex to the right</td>
<td>9.81 ± 8.92</td>
<td>9.25 ± 2.43</td>
<td>9.72 ± 1.43</td>
<td>10.25 ± 10.05</td>
</tr>
<tr>
<td>Lat. Flex to the left</td>
<td>2.43 ± 2.34</td>
<td>2.88 ± 3.32</td>
<td>2.91 ± 1.84</td>
<td>2.91 ± 1.84</td>
</tr>
<tr>
<td>Medicine taking</td>
<td>7.1 ± 1.53</td>
<td>1.75 ± 0.25</td>
<td>0.77 ± 0.81</td>
<td>0.18 ± 0.54</td>
</tr>
<tr>
<td>Radicular pain</td>
<td>5.31 ± 4.62</td>
<td>3.62 ± 2.56</td>
<td>2.5 ± 2.55</td>
<td>2.0 ± 2.3</td>
</tr>
<tr>
<td>Sleep disorder</td>
<td>3.12 ± 4.18</td>
<td>2.94 ± 2.94</td>
<td>2.94 ± 2.94</td>
<td>3.06 ± 3.06</td>
</tr>
</tbody>
</table>

Table 2. Descriptive statistic of variables in the control and experiment groups during 4 evaluation times.
and hence pain reduction. 4) Cervical and shoulder girdle muscles exercise can facilitate local muscle circulation and reduction of total load bearing of the cervical spine, hence leading to radicular pain relief. The results were in agreement with the results of Shakoor et al. (2002) indicating positive effects of strengthening exercise on pain reduction [11].

Intra group results of the study revealed significant difference between various evaluation times of experimental group of neck pain, radicular pain and sleep disorder. To explain more positive changes in the experimental group we may assume that; IT relieves the pain because 1) IT with suitable pauses and pulls of traction load has a beneficial effect on improving metabolism of the facet joints cartilages, 2) IT improves circulation of the narrowed neural foramen, and facilitates oxygen uptake, and metabolism, thus reducing concentration of substances such as histamine, prostaglandin and so forth, 3) it helps remove adhesions occurring between the dura mater of the nerve root and bone or ligament structures of the neural foramen. Removal of the adhesions may be effective in reducing radicular pain, sleep disorder and neck pain [20, 22]. These findings are in agreement with the results of Moeti et al [19], Costantoyannis et al [23] and Hattori et al. [24]. They reported that IT is effective for the improvement of the neck pain, especially in the radicular pain reduction.

The reduction of NSAID consumption in patients of the experimental group, in comparison to control group, could be related to the corrective and sedative effects of IT.

Neck mobility in the experimental group significantly increased in all directions i.e., flexion, extension, rotation and lateral bending to the right and the left. Movement improvement in the experiment group can be due to 1) the correction of the spinal alignment, 2) the reduction of the protective spasm, 3) distraction of the facet joints, 4) increasing the sliding between facets and 5) stretching shortened Para-spinal soft tissues, lick ligaments, and joint capsule. All these factors may facilitate segmental neck mobility increase [20, 22].

Conclusion

Although the inter groups differences were not significant, application of IT in patients with mild to moderate OA could produced a greater improvement. In the light of all these
findings we believe that in physical therapy of the patients with cervical OA, when there is not any contraindication, application of intermittent traction can be one of the best choices. We propose a new study to compare the effects of sustain traction with a control group in patients with the cervical OA.

Acknowledgment
This study was supported by grant from the Deputy of Research Affairs for Iran University of Medical Sciences and Health Services, Tehran, Iran, grant #537. We would like to thank the department of physical Therapy of the school of Rehabilitation Sciences, Mirdamad, Tehran, Iran, for use of their equipments and facilities. The helpful comments and suggestions of the anonymous editors and reviewers were greatly appreciated.

The authors have declared that no competing interests exist were in this study.

References
21. Reese NB, Bandy WD. Joint range of motion and muscle length testing, 1sted; London: Saunders; 2002; 209-250.